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ABSTRACT

In this paper, we introduce the concept ofentirth@s edge semientire block graph of a treg(E). We obtain
some properties of this graph. We study the cherizetion of graphs whose entire pathos edge sé¢ingidslock graphs
are always planar, minimally nonouter planar, drigseumber one. Further, we also establish theaciarization for k.

(T) to be Hamiltonian and noneulerian.
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[. INTRODUCTION

All graphs considered here are finite, undirectéithaut loops or multiple edges. Any undefined tevrmotation

in this paper may be found in Harary [2].

The concept of pathos of a graph G was introdugeflbas a collection of minimum number of edgejaligs
open paths whose union is G. The path number o&jphgG is the number of path of pathos. Stantorafid] Harary [2]

have calculated the path number of certain claskgsaphs like trees and complete graphs.

For a graph G(p, q) if B={ W, W, - - -, 4 r>2}is a block of , then we say that point and block B are
incident with each other, as argand B and so on. If two distinct blocks &1d B are incident with a common cut vertex
then they are called adjacent blocks.

By a plane graph G we mean embedded in the plaopmssed to a planar graph. In a plane graph &etv be
an edge. We say; és adjacent to the vertices u and v, which are atfjacent to each other. Also an edge edjacent to
the edge £=uw. A region of G is adjacent to the vertices addes which are on its boundary, and two regidrG are

adjacent if their boundaries share a common edge.

The crossing number c(G) of G is the least numbéntersection of pairs of edges in any embeddih@ an the

plane. Obviously G is planar if and only if ¢(G)=0.

The edge degree of an edge e = {a, b} is the sum of degrees ofahé vertices a and b. Degree of a block is the
number of vertices lies on a bloddockdegreeB, of a vertex v is the number of blocks in whicheslBlock path is a path
in which each edge in a path becomes a block. df gjaths p and pcontain a common cut vertex then they are adjacent
paths and thpathdegreeP, of a vertex v is the number of paths in which @liBegree of a region is the number of vertices

lies on a region. TheegiondegreeR, of a vertex v is the number of regions in which tertex v lies. Pendant pathos is a
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30 Venkanagouda Mgoudar & Jagadeesh N

path pof pathos having unit length.

The inner vertex number i(G) of a planar graph Ghis minimum number of vertices not belonging te th

boundary of the exterior region in any embeddingadh the plane.

A new concept of a graph valued functions calleddtige semi Entire block grapi(&) of a plane graph G was
introduced by Venkanagouda in[8] and is definedhasgraph whose vertex set is the union of setlgés, set of blocks
and set of regions of G in which two vertices ad@geent if and only if the corresponding edges c&ré adjacent, the
corresponding edges lies on the blocks, the cooreipg edges lies on the region and the correspgndiocks are

incident to a cut vertex.

The pathos edge semientire grap(TPof a tree was introduced by in [9]. The patkdge semientire graph(F)
of a tree T is the graph whose vertex set is theruafset of edges, regions and the set of pathgathos in which two
vertices are adjacent ifand only if the correspongdidges of T are adjacent, edges lies on therregid edgeslies on the
path of pathos. Since the system of path of pditros tree T is not unique, thecorresponding pa#tuge semientire graph

is also not unique.

The pathos edge semientire block graph of a trderibted by R(T) is the graph whose vertex set is the union of
the vertices , regions, blocks and path of patHfoB im which two vertices are adjacent if and oiflghey are adjacent
vertices of T or vertices lie on the blocks of Twvertices lie on the regions of T or the adjacdatks of T. Clearly the

number of regions in a tree is one. This conceptiwgioduced by Venkanagouda in [3].

The block graph B(G) of a graph G is the graph whaesrtex set is the set of blocks of G in which tvestices

are adjacent if the corresponding blocks are adiad@éis graph was studied in [2].

The path graph P(T) of a tree is the graph whoseexeaet is the set of path of pathos of T in whieb vertices

of P(T) are adjacent if the corresponding pathathps have a common vertex.

The following will be useful in the proof of ourgelts.

Theorem 1[6]: If G is a (p, q) graph whose vertices have degrdbeth L(G) has q vertices andgdges where
9= —q+;%dk

Theorem 2[6]: The line graph L(G) of a graph G has crossing nunoioe if and only if G is planar and 1 or 2
holds:

1. The maximum degree D (G) is 4 and there is wigan cut vertex of degree.

2. The maximum degree D (G) is 5, every vertexeagfrde 4 is a cut vertex, there is a unique vertelegree 5

and has at most 3 edges in any block.
Theorem 3[2]: A connected graph G is isomorphic to its line grd@nd only if it is a cycle.

Theorem 4[6]: The line graph L(G) of a graph is planar if andyoiflG is planarA< 4 and if deg v = 4 for a

vertex v of G, then v is a cut vertex.
Theorem 5[1]: A graph is planar if and only if it has no sub drdmmeomorphic to Kor Ks 3.

Theorem 6[1]: A connected graph G is eulerian if and only if esehtex in G has even degree.
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Theorem 7[2]: A nontrivial graph is bipartite if and only if atk cycles are even.

Theorem 8[3]: For any planar graph G, pathos edge semientirklgcaph PEG) whose vertices have degrge d
has (2g+k+1) vertices ani@d%gq#Z@ edges, where r the number of regions , b the nurbélocks ¢ the

number of edges in a block by be the block degree of a cut vertexad ¢ be the number of edges regign r
Theorem 9 [10]:For any tree T, B(T) has crossing humber one , if and only if T jza¢h B.
Theorem 10[10]:For any tree T, B(T) is always non-separable.

Theorem 11[10]:For any edges;@n a tree T with edge degree n then degree of@sponding vertex inpET)

is n+1.
1. Entire Pathos Edge Semi Entire Block Graph
We now define the following graph valued function.

Definition 2.1: The Entire pathos edge semientire block graphtoé@ T denoted by &(T) is the graph whose
vertex set is the union of set of edges, blocksgiores and path of pathos of T in which two vertiees adjacent if the
corresponding edges of T are adjacent or correspgridocks of T are adjacent or one corresponds lxtock of T and
other to the edge e of T and e lies on it, or aneesponds to a region of T and other to an edgieTeand e lies on it or
one corresponds to a path of pathos of T and ¢then edge e of T and e lies on it or one corredgpdm the block b of T
and other the path p of T and both b and p havenaron edge in T. In Figure 2.1, a graph G andoital pathos edge

semientire block graph are shown.

Figure 2.1
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Remark 1: If a tree T is connected thepdT) is also connected.

Remark 2: For any tree T, B(T) is a spanning sub graph of£).

Theorem 12:For any tree T, &(T) is always nonseparable.

Proof. By Theorem 10, B(T) is nonseparable and by Remark 2{E) is also non separable.

Theorem 13:If Tis a connected graph with p vertices and g edgkose vertices have degreand if h be the
number of blocks to which the edgebelongs in T then the entire pathos edge seméehtack graphk(T) has 2g+k+1
vertices andq + %Z az + Y q; + %Z b, (b — 1) + edges, where;jdpe the number of edges in each blogldd i be
the block degree of a cut vertex c

Proof. By the definition of E{T), the number of vertices is the union of the esjgegions, blocks and path of
pathos of T. By the Remark 2 and by TheoremgTit has 2q + k + 1 vertices. By the definition o), the number of
edges in E{T) is the sum of the edges ig,T) and the edges of T. By Theorem 8, E({P)] = %Zdi2+2qj+zw and

the edges of pathos block graph is q. HencedggTH = 2q +%Zdi2 + Zq; + %Zbk(bk_l).
Theorem 14:For any tree T, &(T) is planar if and only if T is K, n< 3.

Proof. Suppose R(T) is planar. Assume that T ig kfor n> 4.For the sake of simplicity, we take n = 4. By the
definition of L(T), L (K14 = K. Since all the edges of T lies on one region thdfx{T), the corresponding region vertex
r, is adjacent for all vertices of4Ko form a complete graphsKHence E{T) contain K as induced sub graph, which is

nonplanar, a contradiction.

Conversely, suppose Tk for n< 3.Let T = Ky 3 then L(K; 3) = Ks. Since T is a tree and all the edges lies on
only one regiony In a tree T each edge is a block then by thendiein of E-(T) , each vertex; is adjacent to the block
vertices b as well as the region vertex further the pathos vertices ip adjacent to the verticqé&ej' which are
corresponds to the edges lies on path of pathdd aktly, each block is an edge and is adjacetiti¢gpathos vertices to

form a planar graph. Hence ) is planar.

Theorem 15:For any tree T, kmis minimally nonouterplanar if and onlyA(T) < 2 and T has a unique vertex

of degree 2.

Proof. Suppose R(T) is minimally nonouterplanar assume t4T) < 2. By the Theorem 14, HT) is outer
planar, a contradiction. ThugT) = 2.

Assume that there exist two vertices of degreeRtimen by Theorem 9,KT) has crossing number one which is

non-planar, a contradiction. Hence T has exacte/vartex of degree 2

Conversely, suppose every vertex of T Ha® and has a unique vertex of degree 2, there . iByPthe definition
of timegraph L(RB) = P,. Since all edges of T lies on only one region &ahtain only one path. In:ET) r, is adjacent to
e&e; and g&e; adjacent to the block,ldy respectively. Also and bj are adjacent to form cycle & b, be ,r; is adjacent

to e&e;. Further Ris adjacent to;eg;, b,y clearly p is the inner vertex number. Hence bfH)] = 1.

Theorem 16:For any tree T, R(T) has crossing number one if and only if T isaghpR, or Ky 3(Py).
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Proof. Suppose R(T) has crossing number one, thes(E) is non-planar. By the Theorem 14 we have T3 K

n=4orT=Rn>4.
We now consider the following cases.

Case 1:Assume that T = K, for n = 4. By the definition of line graph L (i) = K,. In a tree all the edges lies on
only one regionyt in Tey(T), 1, is adjacent to all vertices of,Kwhich form Ks.Further each edge is a block in T and alll
four blocks b, b,, & b, are adjacent to each other to form a completehgkap{ b;, by, bs, by}. In EpdT), the inner
vertex say pis adjacent to the corresponding vertiegsvhich form one more crossing number. HenggTH has crossing

number at least two, a contradiction.

Case 2:Assume that T = Pfor n = 5 clearly L(B)=P,. In Ex{T).the region vertex;ris adjacent to all vertices
e;,e,,es, e, which corresponds to the edgese, &;, & of T and eacle, is adjacent to;bSince all edges lies on only

one path we join the vertices to the pathos vertices.Elearly its crossing number is at least two, ati@diction.

Case 3:Assume that T be a graph= K, 5 (P,). By Theorem 15,(T) is nonplanar. The graph contains two
path of pathos and their corresponding to two matrestices pand pEp{T). These two vertices lies in the interior region

of EpdT). Also they have joined by the edge and givessing number at least two, a contradiction.

Conversely, suppose T is KP:). By Theorem 15,K(T) is planar. K,3 (P,) contains two path of pathos&p, such that p
lies in the interior region and; fies in the exterior region. In:ET), two vertices joined by the edges e, for p, and g, &
for p,, gives crossing number one. Hence(E) has crossing number one.Also T ig Bhen by Theorem 15%HP,) is
nonplanar. In a path,Pthere is only one pathosvertexwhich is adjacent to the verticeg, e, , e;” which corresponds to
the edgesg e, & of P,. Also g, &, &, by, by, b; form 2G, cycles. Since Pcontains only one region which is adjacent to

all e; 'V i and gives crossing number one. HenggHg) has crossing number one.
Theorem 17:For any tree T, i(T) is always noneulerian.
Proof. Let T be a non-trivial tree we consider the follogicases.

Case 1:Suppose T be a path.Bf n = 3, both edges having edge degree odd,Hgoilem 11, both vertices have
even degreein &T). ut the block vertices; Iis adjacent to;bg and p to get odd degree. HencedPs)is noneulerian. If n
> 3, then the internal edges having edge degree @&Mheorem 11, the corresponding vertices (B have odd

degree. Then &) is noneulerian.

Case 2:Suppose T be a star K If n is odd then each edge having edge degrem évé:(T), the corresponding
vertices having degree odd, which is noneuleriam Is even then each edge having edge degreelodg:dT) the
corresponding vertices having even degree. Further each block verticesljscent to all the each remaining n-1 block
vertices to form complete graph,KAlso each block s adjacent to the vertices' corresponding to;e b and R is

adjacent to hgives a vertex;having odd degree. Hencef) is non eulerian.
Case 3:Suppose T be any tree.By case 1,2 is noneulerian. Hence-ET) is always noneulerian.
Theorem 18:For any tree T, i(T) is always Hamiltonian .

Proof. We consider the following cases.
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Case 1:Suppose T is a path with [[e.. . . . .. gleE(Mandh=e,b=6,........ = e,be the blocks of T. T
has exactly one path of pathos and only one regiddow the vertex set of §T) V[ EpdT)] ={ €1, €5, ...y YU [ by,
by, ...... h} U P, U r; then by the definition of &T), the block vertices the region vertices and ghthos vertices are
adjacent to al,, e, , ... ....e,,” as shown in the figure 2.3. Clearly indf) the Hamiltonian cycle;rebib, . . . . . e P,

I - e r, exists. Hence &(T) is Hamiltonian

Case 2:Suppose T is not a path then T has at least otexveith degree at least 3. Assume that T has xant

one vertex V such that degree > 2. Now we conshiefollowing subcases of case 2.

Sub Case 2.1Assume that T = K,, n>2 and is odd then the number of paths of pamheré;r—l. Let V[ EdT)] =

{ e ey, ey, bbby ... .. R} U ry U { Py, P,Pn+1 } then there exist a cycle containing the vertiocdéE{T) as
2

rePibib,. . . .. Bp2 € . ... Pni1 & 1 and is a Hamiltonian cycle. HencedH) is Hamiltonian.
2

Sub Case 2.2Assume that T = K, n>2 and is even then the number of path of patines/2. Let V [(E{T)] =

{el e, e by ... RUr U[P,P..... P ]. By the definition of P E(T), there exists a cycle containing
2
the vertices of R(T) as kepbib, . . . . .. APes . . .. .. Pn & & r; and is a Hamiltonian cycle. Hence ) is
2
Hamiltonian.

Case 3:Suppose T is neither a path nor a star then T tmnéd least two vertices of degree greater thdre®V [
EpdT)] =f{ei &. ...... gb; by ... .. RPU{P.P..... R} U r.. By the definition off{T) there exist a cycle C
containing all the vertices of BT) as &, e, by, b, by, P, & bsbesps . . . . . .. g1 boipee, r. Hence R{T) is a

Hamiltonian cycle. Clearly &(T) is a Hamiltonian graph.

Figure 2.2
CONCLUSIONS

In this paper, we introduced the concept of thdarempathos edge semientire block graph of a tree. W
characterized the graphs whose entire pathos eelgéemstire block graphsare planar, noneulerian, Haman and

crossing number one.
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